
VISUAL ENGINEERING
KavaChart Developer Documentation

KavaChart
PHP Users

Guide

V E R S I O N 5 . 0

KavaChart PHP Users Guide

2005 Visual Engineering, Inc.
164 Main Street • Second Floor • Los Altos, CA 94022

Phone 650.949.5410 • Fax 650.949.5578

Table of Contents
KAVACHART INTRODUCTION 3

What is KavaChart?..3
The KavaChart Wizard..3

QUICK START GUIDE..................................... 5

Getting Started...5

Sample Code...6

TERMINOLOGY OVERVIEW 8

Chart Parts ...9
X Axis and Y Axis...9
Plotarea ..10
Background..11
DataRepresentation..11
Legend ...12

KAVACHART PHP OBJECT FUNCTIONS
AND CHART PROPERTIES 13

Chart Object Functions...13

Chart Object Variables ...14

Image Management Properties14

Tooltip and Hyperlink Properties........................15
Hyperlinks..15

Data Related Properties ..16
Dataset Properties ..17
Discontinuities ...18
Time oriented charts ..18
Managing Date Formats18

Color and Style Properties....................................19
General Color and Font Properties21
Axis Related Properties24
Date and Time Axis Properties............................26
Dataset Related Color and Style Parameters.......27

SERVER CHART OBJECTS 29
Area Charts ..29
Line and Scatter Charts..31
Bar and Column Charts33

Pie Charts ...36
Combinations: Bar-Area Chart............................37
Combinations: Bar-Line Chart38
Speedos ..39
Radar Charts ..40
Bubble Charts ..40
Gantt Charts ...41
Sectormap Charts...42
Combinations: Bar-Area Chart............................43
Combinations: Bar-Line Chart44
Candlestick and OHLC Charts45
Stick Charts..46
Combination Charts ...46
Combinations: Multiple Axis Charts...................47

Using a Properties Object or File.........................51
Property Files...51

IMAGE FORMAT RECOMMENDATIONS 52
GIF ...52
JPEG ..52
PNG..52
Flash...53
SVG..53
BMP ...53
Run the Examples ..55

INDEX ... 57

 3

KavaChart Introduction
This chapter provides an overview of how KavaChart
works in a PHP scripting environment.

What is KavaChart?
KavaChart is a collection of tools for turning numbers into charts. KavaChart
ProServe includes a charting engine that can create images and Macromedia
Flash output “on-the-fly”, based on dynamic data and style information.

KavaChart PHP is a very small bit of PHP code that gives you PHP scripting
access to the KavaChart output engine. KavaChart PHP does not generate the
chart image directly. Rather it creates a customized URL that includes encoded
data and style information. This URL obtains a stream of image data, or
Macromedia Flash, or SVG (Scalable Vector Grahics).

The KavaChart PHP chart object places this URL into the appropriate “IMG”
or “OBJECT” tag, so that your PHP pages can include a mixture of HTML text
and graphics. When your page is rendered on a browser, the browser makes an
HTTP connection to the KavaChart image server to obtain the chart data. PHP
is used only to construct the request.

By combining KavaChart’s robust chart server with PHP’s easy to use scripting
techniques, you can add dynamic data-driven graphics to just about any web
application with a minimum of programming.

It’s possible to design charts by hand, using a text editor and documentation
about KavaChart’s server object properties. It’s a lot easier, though, to design
your charts visually, using the KavaChart Wizard. This on-line tool provides a
graphical interface for designing chart appearance, and the ability to combine
your local data sources with chart designs. The Wizard produces complete
output templates. These templates can be placed on the chart server to
minimize the amount of information stored in the dynamic chart URL.

Chapter

1

The KavaChart
Wizard

 5

Quick Start Guide
If you’re the kind of user that wants to see results ASAP, follow this
quick start guide to get KavaChart busy producing images right away.

Getting Started
Since KavaChart PHP can use a chart engine on a server other than your PHP-
enabled server, to get started, you only need to place the kavachart.php file on
your server. This file contains all the necessary logic to put KavaChart images
on your pages.

The default server settings will use a Visual Engineering demo server, so your
chart images will include a message like “KavaChart Images from ve.com”.
You can remove this message by installing a licensed version of KavaChart
ProServe.

A typical chart session looks like this:

Chapter

2

KavaChart
ProServe
Installation

PHP code:
<?
$chart = new Chart;
$chart->setProperty(…);
…

Page on user’s web
browser

Chart image request

Chart data stream

 6

As usual, your PHP code is responsible for rendering dynamic content for the
user’s web page. Part of this content is an IMG or OBJECT tag that describes a
chart to the KavaChart server.

As usual, the user’s browser makes new HTTP connections to retrieve image
and OBJECT information. The chart URL points to the KavaChart server,
which builds and returns a chart image.

Sample Code
The PHP code to generate a simple chart is very brief:

<?
include 'kavachart.php';
$chart = new chart;
$chart->setProperty('dataset0yValues', '123,432,123,432');
?>
<html>
<body>
<p>
A chart:
<?=$chart->getImage()?>
</body>
</html>

This little snippet of code produces a chart like this:

What really happened? We created a PHP “chart” object, and then set a
“property” named “dataset0Yvalues” with the values “123,432,123,432”. Whe
our PHP code called “$chart->getImage()” the KavaChart PHP code produced
an image tag that points to the VE demo server with all the property
information, styles, chart type, and so on.

A chart’s data, titles, colors, and other styles can be set using the chart object’s
“setProperty” method. Since you can use PHP variables for these properties,
You can use PHP to build your overall chart. Here’s an example:

 7

<?
include 'kavachart.php';

$chart = new chart;

for($i=0;$i<5;$i++){
 $data = $data . (rand()/10000) . ',';
};

$chart->setProperty('dataset0yValues', $data);
$chart->setProperty('dataset0Labels', 'a,b,c,d,e');
$chart->setProperty('individualColors', 'true');
$chart->setProperty('titleString', date('Y-m-d'));

?>
<html>
<body>
<p>
<?=$chart->getImage()?>
</body>
</html>

This time we set some new properties, including some from PHP variables, to
produce this chart image:

Again, the actual code is very simple. At this point you’re probably wondering,
“what are all these properties?”. Charts can have a large number of properties,
to define the most minor visual features (e.g. whether minor tick marks are
displayed, or the line style for y axis grid lines) and some charts types have
properties that only make sense for that chart type (e.g. startingAngle, for pie
charts).

You can find complete documentation on the available chart properties in other
chapters of this manual.

 8

Terminology Overview
It’s helpful to understand KavaChart’s terminology. Here’s a visual description
of some of the most basic terms:

KavaChart charts use a standard set of graphical and non-graphical components
to do the work of representing your data. To get the most out of your charts, it's
helpful to understand how KavaChart refers to these components and how they
fit together.

Chapter

3

Y Axis

X Axis

Plotarea

Data Representation
(Bar, line, etc.)

Background

 9

Chart Parts

Axes can occur on the left, right, top or bottom of a Plotarea. A Y axis scales for
Dataset Y values. Normally, these are represented vertically, and the Y axis is
vertical. Horizontal Bar charts, Speedo charts, and Pie charts are exceptions.

X axes scale for Dataset X values. For some charts, such as a Column chart or a
Stacked Column chart, the X axis distributes the data evenly along the X axis,
regardless of the Dataset's X values.

Several different types of Axes exist in KavaChart charts. A basic Axis
automatically creates an aesthetically pleasing scale, arranged in even increments.
An Axis can also scale logarithmically, which is appropriate for data with
extremely wide variation. Some specialized axes, such as the DateAxis, are
designed to handle specialized data. DateAxis arranges increments in months,
weeks, or some other appropriate time value. A LabelAxis, such as those used
for Column charts, will use user-defined labels. If no user-defined labels are
present, the axis will try to determine appropriate labels.

X Axis and Y Axis

X Axis

Y Axis

Y Axis

X Axis

 10

Axes contain a number of elements that can be visible or not visible. These
include the axis line, tick marks, minor tick marks, an axis title, labels, and grid
lines. You can define the color of these elements, and in the case of labels and
titles, the font. Labels can also use a number or date format of your choosing.
By default, time and numeric labels are automatically localized for various
locales.

Axes can be automatically scaled, semi-automatically scaled (you set the start and
end, and let the axis determine labelling and increments), or manually scaled. A
non auto-scaled axis requires you to set tick, grid, label, and minor tick counts as
well as the axis start and end values.

A Plotarea is the region bounded by an X and a Y Axis, which contains a
DataRepresentation (such as a Line, Bar, Area, etc.). A Plotarea has a size and
location determined by the upper right and lower left corners. The values that
define the Plotarea size and location are percentages, relative to the overall chart.
For example, an upper right corner value of (0.75, 0.75) means that the top of
the Plotarea will be at 75% of the height, and the right side of the Plotarea will
be at 75% of the width.

A Plotarea also has a user defined color and outline color.

By changing the size and location of your Plotarea you implicitly change the size
of your chart's margins. All Axis and DataRepresentation geometries will
automatically adjust to accomodate your Plotarea definition.

Plotarea

Plotarea

 11

The rectangle underlying the entire chart is called a Background. The
background also contains a title and sub-title. You can set the color of the
background or use an image for the background if you prefer. You can also set
the color and font of each of the title strings.

A DataRepresentation is the name KavaChart uses for a variety of objects.
These include Line, Area, Bar, and Pie, as well as other more specialized
DataRepresentations. These items visually describe a group of Datasets. For
example, bar DataRepresentations exist that draw multiple series horizontally or
vertically, and side by side or stacked. Bars also exist to represent high and low
values, and to draw hi-lo-close, candlestick, histogram and other industry-
specific visuals.

DataRepresentations obtain graphical information like colors and label fonts
from the Datasets represented. Additionally, the X, Y (and other) magnitudes, as
well as the bar/pie/etc. labels are derived from information in the Datasets.

Because DataRepresentations provide specific visual representations, they often
have specialized properties. For example, bars can have variable cluster widths
(the width of one group of bars), pies can vary the starting angle and toggle
visibility on percent labels, speedos can have various types of needles, and so on.

Background

DataRepresentation

Background

Data Representation

 12

A Legend contains a description of the Datasets in a particular chart. The icons
and label text comes from the chart's Datasets. The X and Y values of a legend's
lower left corner describe the legend's location. These values are in percentages
of the overall chart. For example, a location of (0.5, 0.5) would place the lower
left hand corner of the legend exactly at the center of your chart (50%, 50%).

Legends can have a background color, label font and font color. They can be
arranged horizontally or vertically. You can also adjust the size of the legend's
icons and the gap between the icon and the legend text (again, in percentages of
the overall chart). Legends that are too large for the space you have defined will
attempt to create a table of entries (rows and columns).

Various types of legends exist. These include standard Legends, which describe
each dataset with a Dataset name and a rectangular icon, Pie legends, which
describe each element in the first Dataset with an icon and the element name,
and LineLegends, which use a line and optional marker for each Dataset.

Legend

Legend

 13

KavaChart PHP Object
Functions and Chart
Properties
This chapter discusses the functions and variables available in the
KavaChart chart object, and the properties chared by all chart types.

Chart Object Functions
Generally, you can create a chart by creating an chart object instance, and then
calling “setProperty” repeatedly to set up the chart attributes, and then calling
“getImage()” to get the HTML code for image creation. Since the vast majority
of chart object attributes are set by using property pairs, you will only use a few
public methods with them. The public methods are listed below.

Method Effect

$chart-> setProperty (name, value);
Sets a specified property to a specified value. Consult
the list of server properties, general properties, and
chart-specific properties for more information.

$chart->getImage(); Creates HTML code appropriate to producing a chart
image with the data and styles you’ve defined.

$chart->setStyle(propertyFilename);

To use the chart engine most efficiently, you should
place all non-dynamic style information into a
properties file, and put that file on the chart engine
server.

$chart->setChartType(chart type); Names the charting application that should be used by
the server. These are listed later in this document.

$chart->setResourceBundle(name);

If your application serves multiple locales, you can
create a separate properties file for each locale.
These files would contain localized titles, labels, and
so on. The localized properties file is called a
“resource bundle”, and it has a “base name”, such as
“myStyles.properties”. Localized versions are
preceded by the 2 or 4 character locale specification.
For example, “en_myStyles.properties” would be the
English language version, and
“es_myStyles.properties” would be the Spanish
language version.

Chapter

5

 14

$chart->setLocale(abbreviation); Sets the locale abbreviation to be used for loading a
resource bundle.

Chart Object Variables
The KavaChart PHP object includes a few user variables that can be used to
control how the object functions. Most importantly, these can be used to
override the default server, and the default service used on that server.

Method Effect

$chart-> imgHost Sets the name of the host KavaChart server. The
default is www.kavachart.com.

$chart->servletName The name of the servlet used for the KavaChart
ProServe engine. The default is “/KavaChartStream”.

You can also override the way image URLs are constructed by modifying the
variables $imgPrefix and $imgSuffix. Functions are provided to create Flash
and SVG object containers. While these have been tested with all popular
browsers, you may need to modify them for some applications.

Image Management Properties
The following table describes the built-in image management properties
associated with the KavaChart server.

Property value
type

effect

imageType String

Output image type. This defaults to PNG generation.
Other supported imageTypes include: “flash” or “swf”,
which produces Macromedia Flash output, “svg”, which
produces Scalable Vector Graphics, "gif" , j_jpeg (a
jpeg generator), j_png (a PNG generator,
recommended), j_bmp (a .BMP file generator), j_ico (a
.ICO file generator), j_xbm (an X-bitmap generator),
j_xpm (X-pixmap generator).

height integer pixel height of generated image
width integer pixel width of generated image
antialiasOn true/false Turns antialiasing on for the resulting chart image.

 15

Tooltip and Hyperlink Properties
If you use Macromedia Flash or Scalable Vector Graphics (SVG) image types,
your charts can include tooltips and hyperlinks. This section describes the
properties used to define these items.

Property Value
type Effect

toolTips true/false Tells the object whether the chart should contain tooltips
hasLinkMap true/false Tells the object whether to use hyperlinks

dwellUseDatasetName true/false Tells the server whether to use the dataset name in the
popup dwell labels

dwellUseLabelString true/false Tells the server whether to use each datapoint's label as a
part of the popup dwell labels.

dwellUseXValue true/false Tells the server whether to use each datapoint's X value as
a part of the popup dwell labels.

dwellUseYValue true/false Tells the server whether to use each datapoint's Y value as
a part of the popup dwell labels.

dwellXString String
A text string containing the characters "XX" to add
descriptive text to the dwell label X value. Example:
"Category XX"

dwellYString String
A text string containing the characters "XX" to add
descriptive text to the dwell label Y value. Example: "Unit
Sales: $XX"

dwellXPercentFormat true/false Determines whether the X label will use a percent format

dwellYPercentFormat true/false Determines whether the Y label will use a percent format

dwellXCurrencyFormat true/false Determines whether the X label will use a localized currency
format

dwellYCurrencyFormat true/false Determines whether the Y label will use a localized currency
format

dwellXLabelPrecision Integer
Number of digits of precision for dwell label values. For
example, if precision is "2", labels will look like this: 123.45
or 123,45.

dwellYLabelPrecision Integer Number of digits of precision for dwell label values. For
example, if precision is "2", labels will look like this: 123.45

KavaChart can generate hyperlinks in Macromedia Flash and SVG output. This
is useful if you want to create “drill-down” reports keyed to individual data
items. For example, a pie chart might represent revenues in each district of a
county. Clicking on a slice could take you to another chart that describes the
revenue breakdown for that individual district.

Hyperlinks work the same as tooltips, but use some additional properties:

Property Name Value Description

Hyperlinks

 16

datasetNLinks List
A list of comma-separated URLs that will be used as
hyperlinks for each Datum (bar, pie slice, line marker, etc.) in
Dataset N.

Data Related Properties
Every chart creates a graphical representation of numeric information.
Different kinds of charts require different kinds of numeric information, but
every chart requires at least some sort of numbers to start with. KavaChart
organizes this information into "Datasets", which contain the numbers and text
required by your chart.

Some charts have a single dataset (pie charts and speedos), while others may
have many datasets (each line on a line chart is a different dataset). Similarly,
some datasets contain a lot of information for each observation (a candlestick
chart has a time, high, low, open, close, and label value for each price bar), while
others contain only a little (a speedo uses only a single value, and a pie uses one
value and one label for each slice).

Following mathematical conventions, the most basic numeric unit for each
observation in a chart is called a "Y" value. This means that we use "Y" values
to define the value for each slice in a pie, or the height of each column, or even
the width of a bar in a horizontal bar chart. Y values are required for any chart
to create a meaningful visual.

Every chart can also contain a textual label for each Y value. These charts don't
always display that label, but it's available. For example, you might assign some
labels like "East", "West", "North", and "South" to a bar chart. The labels
might not be visible on the chart, but you could use them in a tooltip label for
users that want to explore further.

Some charts also use "X" values, which is generally thought of as the
"independent", or deterministic part of your observation. For example, if your
chart shows how ozone levels compare to temperature, you would assume that
temperatures are "independent" of ozone levels, while ozone levels may be
"dependent" on temperatures. Temperature would be used as "X" values in this
case. A line chart that plots ozone levels against temperature might have a
variety of temperature observations that don't fall into neatly defined categories,
but for each temperature observed (X), there would also be an ozone level
observation (Y).

Not all charts use X values. In some cases (pie charts) this is obvious. In other
cases, it may not be. For example, bar charts don't usually use X values, because

 17

bars are generally used to represent categories, rather than a set of independent
numeric values. In the case of a bar or column chart, KavaChart will ignore
your X values, and use a set of implied X values (0, 1, 2, ...).

More complex charts, such as hi-lo bar charts or financial charts (OHLC,
Candlestick) require additional information, which we call "Y2" and "Y3" data.
This auxiliary information takes on special meaning depending on the chart that
calls for it.

All this X, Y, Y2, and Y3 data is organized into datasets. Every chart can
contain up to 40 datasets, with an unlimited number of observations in each
dataset. Some charts (speedo and pie, for example) don't use all the data; these
charts use the lowest numbered information available. For example, pie charts
use dataset 0, and speedos use only observation 0 of dataset 0.

In addition to the numbers and text, each observation can also take a fill color
definition, a line color, and a fill style and line style. The dataset that contains
the observations also has fill, line, and color information, and a name for the
overall dataset. Different charts use all this information in different ways.

For example, a pie chart uses the color definitions for each observation to draw
each slice, and individually colored bar charts use this information for each bar's
color and for legend icons. Standard bar charts and line charts use the dataset
colors and labels for drawing and legends.

The table below gives parameter names and usage descriptions. All parameters
listed as “dataset0” are valid for datasets 0 through 39. Items described as “lists”
expect a comma separated list of values, colors, etc. You can change the
delimiter from a comma to another character with the “delimiter” param.

Property
Name

Type Effect

dataset0xValues list comma separated list of X values for dataset 0.

dataset0yValues list comma separated list of Y values for dataset 0

dataset0y2Values list comma separated list of difference values for dataset 0 hilo bars

dataset0xyValues List comma separated list of X,Y values for dataset 0.

dataset0dateValues List Comma separated list of time/date strings for dataset 0. See also
“inputDateFormat”.

dataset0y3Values list Tertiary observations for charts that require 3 Y values (e.g. hi-lo-close
charts)

Dataset Properties

 18

One special case deserves notice here. Some charts support the notion of
"discontinuities" (disLineApp, disDateLineApp, etc.). In these charts, you want
to have a break in the line or some other visual feedback that shows missing
data. In this case, you can just use some non-number, like 'x', to indicate a
break. KavaChart recognizes this as a missing point and creates the line break
as appropriate. Here's an example:

<?
$chart = new chart;

//add some data here:
$chart->setProperty("dataset0yValues","2,3,6,x,4,5,2,x,7,8");
?>
<p>
Here's the chart:

<?=$chart->getImage()?>

Charts that display time oriented data (dateLineApp, dateAreaApp, etc.) use
time stamps as a special kind of numeric value. For these charts, use the
property dataset0dateValues, like this:

$chart = new chart;
$chart->setChartType(“dateLineApp”);
$chart->setProperty("width", "300");
$chart->setProperty("height", "200");
$chart->setProperty("dataset0yValues", "234,321,234");
$chart->setProperty("dataset0dateValues",
 "01/01/02,02/01/02,03/01/02");

This property translates the dates into a form usable by the KavaChart server
and places our Y observations at the proper locations along the axis.
Unfortunately, our date definitions are ambiguous here. Did our observations
occur on January 1, 2, and 3? Or did they occur on January 1, February 1, and
March 1?

To properly use dataset0dateValues, you should also use inputDateFormat:

$chart = new chart;
$chart->setChartType(“dateLineApp”);
$chart->setProperty("width", "300");
$chart->setProperty("height", "200");
$chart->setProperty("inputDateFormat", " MM/dd/yy");
$chart->setProperty("dataset0yValues", "234,321,234");
$chart->setProperty("dataset0dateValues",
 "01/01/02,02/01/02,03/01/02");

The table below describes how to construct an inputDateFormat to match your
data generator.

Field Full Form Short Form

Year yyyy (4 digits) yy (2 digits)

Discontinuities

Time oriented
charts

Managing Date
Formats

 19

Month MMM (name) MM (2 digits), M (1 or 2 digits)
Day of week EEEE EE
Day of Month dd (2 digits) d (1 or 2 digits)
Hour (1-12) hh (2 digits) h (1 or 2 digits)
Hour (0-23) HH (2 digits) H (1 or 2 digits)
Hour (0-11) kk (2 digits) k (1 or 2 digits)
Hour (1-24) KK (2 digits) K (1 or 2 digits)
Minute mm None
Second ss None
Millisecond SSS None
AM/PM a None
Time Zone zzzz zz
Day of Week in Month F (e.g. 2nd Tuesday) None
Day in year DDD (3 digits) D (1, 2, or 3 digits)
Era G (e.g. BC or AD) None

Time and date oriented charts have special properties for managing axes, which
are listed below.

Color and Style Properties
KavaChart server charts support a lengthy list of properties to help you make
your charts look exactly the way you want. These properties are used to set
colors, fonts, textures, line styles, and the overall layout of your chart.

Color and style propertes take different kinds of values. The table below gives
you some examples of what these values should be. Also, all properties are case
sensitive.

Parameter
Type

Explanation Example

Integer An integer value, like
“1”, or “7”. This is
usually used to
specify something like
a line style or a
marker style; one out
of a list of several
available types.

$chart->setProperty(“legendTexture”,”1”);

legendTexture=1

Double A real number value,
like 0.25. Generally,
these values are
expressed in terms of
a percentage of the

$chart->setProperty(”plotAreaBottom”,”0.12”);

plotAreaBottom=0.12

 20

overall chart size.

Font font parameters
include information for
the font name, the
font size, and the font
style. The example
instructs KavaChart to
use 18 point Arial italic
fonts for this chart's X
axis labels. 0 is plain,
1 bold, and 2 italic.

$chart->setProperty(”xAxisLabelFont”,”Arial,18,2”);

Color this field expects a
color name, or a
hexadecimal color
definition (in RGB).
Valid colors names in
these charts include
black, white, gray,
darkGray, lightGray,
red, pink, orange,
yellow, green,
magenta, cyan, and
blue. A valid hex
definition for white is
"ffffff". You can also
use the color
"transparent" if you
don't want a particular
element to be visible.

$chart->setProperty(”titleColor”,”ffbb00”);

List These fields are
looking for a list of
items, separated by a
delimiter. The default
delimiter is a comma
character, but you can
change this with the
“delimiter” param.

$chart-
>setProperty(“dataset0Colors”,”green,red,ff00aa”>

String A text string $chart->setProperty(“titleString”, ”hello, world”);

url These fields expect
some URL available
to the KavaChart
server

$chart->setProperty(”backgroundImage”,”/tmp/pic.jpg”);

Boolean Either “true” or “false” $chart->setProperty(”outlineLegend”,”false”);

Anything Some parameters
can take any value.
The server just wants
to know if the
parameter has been
defined

$chart->setProperty(“3D”,”yeah, sure”);

The first group of properties apply to all chart types. These properties define
colors, overall layout, titles, and so on.

Parameter Value Type Effect

General Color and
Font Properties

 21

colorPalette String

Set the overall default color palette for the chart.
Default possibilities:
 web_sanfrancisco,
 web_minnesota,
 web_alaska,
 web_newyork,
 web_losangeles,
 web_grays,
 web_seattle,
 web_newmexico,
 web_rosemary,
 web_pastel,
 web_prague,
 presentation_cool,
 presentation_browns,
 presentation_southwest,
 presentation_impact,
 presentation_deep,
 presentation_oceana,
 presentation_sophisticated

The default is “web_newyork”

colorPaletteDefinition list List of color definitions (e.g. 00ff00,green,blue,black)

titleString String Chart Title (default none)

titleFont font Font name, size, & style for chart title (default
TimesRoman, plain, 12 pt)

titleColor color color of text in Title (default black)

titleX double X location of the title string, if this is not specified the
title will be centered.

titleY double Y location of the title string.
subTitleString String Chart Sub-Title (default none)

subTitleFont font Font name, size, & style for chart title (default
TimesRoman, plain, 12 pt)

subTitleColor color color of text in Title (default black)

subTitleX double X location of the subtitle string, if this is not specified
the subtitle will be centered.

subTitleY double Y location of the subtitle string.

labelsOn anything determines whether bar, line, pie, etc., labels will be
visible

labelAngle integer the number of degrees to rotate datum labels
labelPrecision integer the number of digits of precision for datum labels
legendOn anything make the legend visible
legendOff anything make the legend invisible (default)
legendColor color sets the background color of a legend
legendVertical anything legend icons in vertical list (default)
legendHorizontal anything legend icons in horizontal list

legendLabelFont font Font name, size, & style for legend (default
TimesRoman, plain, 12 pt)

legendLabelColor color color of text in legend (default black)

 22

legendllX double X location of lower left legend corner (default 0.2)
legendllY double Y location of lower left legend corner (default 0.2)
iconWidth double width of legend icon (default 0.07)
iconHeight double height of legend icon (default 0.05)
iconGap double gap between icon and next legend entry (default 0.01)

legendSecondaryColor color The Color to be used as the secondary color for this
legends texture/gradient.

legendGradient integer
Sets the gradient for this legend. Available gradient
values are 0 for left/right mirrored, 1 for top/bottom
mirrored, 2 for top to bottom, and 3 for left to right

legendTexture integer
Sets the texture for this legend. Available texture
values are 0 for horizontal stripes, 1 for vertical
stripes, 2 for diagonal down stripes, 3 for diagonal up
stripes, 4 for cross hashing, and -1 to use the
legendimage to create the texture.

legendImage URL (or filename)
image to use for this legend's background (default
none). Use this property to define line markers for
scatter plots.

legendLineWidth integer pixel width of legend outline

legendLineStyle integer
Sets the line style for this legend's outline. Available
values for this parameter are 0 for dashed, 1 for
dotted, 2 for dot-dashed, and -1 for solid (default = -1).

plotAreaTop double top of the plotting area
plotAreaBottom double bottom of the plotting area
plotAreaRight double right side of the plotting area
plotAreaLeft double left side of the plotting area
plotAreaColor color color of plotting area background (default white)

plotAreaSecondaryColor color The Color to be used as the secondary color for this
plotarea's texture/gradient.

plotAreaGradient integer
Sets the gradient for this plotarea. Available gradient
values are 0 for left/right mirrored, 1 for top/bottom
mirrored, 2 for top to bottom, and 3 for left to right

plotAreaTexture integer
Sets the texture for this plotarea. Available texture
values are 0 for horizontal stripes, 1 for vertical
stripes, 2 for diagonal down stripes, 3 for diagonal up
stripes, 4 for cross hashing, and -1 to use the plotarea
image to create the texture.

plotAreaImage URL (or filename)
image to use for this plotarea's background (default
none). Use this property to define line markers for
scatter plots.

plotAreaLineWidth integer pixel width of plotarea outline

plotAreaLineStyle integer
Sets the line style for this plotarea's outline. Available
values for this parameter are 0 for dashed, 1 for
dotted, 2 for dot-dashed, and -1 for solid (default = -1).

backgroundColor color color of chart background (default white)

backgroundSecondaryColor color The Color to be used as the secondary color for this
background's texture/gradient.

 23

backgroundGradient integer
Sets the gradient for this background. Available
gradient values are 0 for left/right mirrored, 1 for
top/bottom mirrored, 2 for top to bottom, and 3 for left
to right

backgroundTexture integer
Sets the texture for this background. Available texture
values are 0 for horizontal stripes, 1 for vertical
stripes, 2 for diagonal down stripes, 3 for diagonal up
stripes, 4 for cross hashing, and -1 to use the plotarea
image to create the texture.

backgroundImage URL (or filename) image to use for this background's background
(default none).

backgroundLineWidth integer pixel width of background outline

backgroundLineStyle integer
Sets the line style for this background's outline.
Available values for this parameter are 0 for dashed, 1
for dotted, 2 for dot-dashed, and -1 for solid (default =
-1).

3D anything turns on 3D effects for this chart (default 2D)
2D anything turns on 2D effects for this chart (default 2D)

XDepth integer number of pixels of offset in X direction for 3D effect
(default 15)

YDepth integer number of pixels of offset in y direction for 3D effect
(default 15)

delimiter String the separator character for list parameters. Default is
comma (e.g. "123.432.123").

outlineColor Color
Color to use for outlining bars, plotareas, etc. (Default
none). Using this param automatically enables
outlining for most objects

outlineDataRepresentation true/false
If outlineColor is set to some color, you can selectively
turn the outlining off for the DataRepresentation (Bars,
Pie, Area, etc.) by setting this property to "false".
Default is "true".

outlinePlotarea true/false
If outlineColor is set to some color, you can selectively
turn the outlining off for the Plotarea (the region
bounded by the x and y axes) by setting this property
to "false". Default is "true".

outlineBackground true/false
If outlineColor is set to some color, you can selectively
turn the outlining off for the Background (the total
chart image area) by setting this property to "false".
Default is "true".

outlineLegend true/false
If outlineColor is set to some color, you can selectively
turn the outlining off for the chart Legend by setting
this property to "false". Default is "true".

showVersion true/false If this is set to true, the chart will be created with the
version number replacing the chart’s title.

annotation0LabelString String A label for note 0 (unlimited notes available) Note: a
“|” character will break this note into multiple lines.

annotation0Alignment above|below|left|right Where note should appear relative to location

annotation0CoordinateSpace pixel|axis Coordinate space for location values

annotation0Xloc Number Pixels or axis values

annotation0YLoc Number Pixels or axis values

 24

annotation0LabelFont Font Font for this note

annotation0LabelColor Color Font color for this note

annotation0FillBackground true|false Determines whether this note will have an opaque
background

annotation0BackgroundColor Color Note’s background color

annotation0OutlineColor Color This note’s outline color (if any)

The following tables contain properties for adjusting axes. Line, area, bar, and
their derivatives use these properties. Axis properties include individual
properties and an option list. The option list groups several properties together.

The option lists include various options for adjusting the look of an X or Y axis.
Use these parameters in a list, like this:

setProperty(“xAxisOptions” “gridOff,tickOff,lineOn”);

If you're modifying an auxiliary Y axis (such as in a chart that has left and right
axes), use the property name auxAxisOptions.

yAxisOptions (xAxisOptions) Effect

autoScale automatically create axis scale (default)
noAutoScale axis scale defined in other properties
rotateTitle "true" if vertical axis title should be parallel with axis
logScaling "true" if axis should use log scaling
lineOn axis line is visible (default)
lineOff axis line is invisible
tickOn major tick marks are visible (default)
tickOff major tick marks are invisible
minTickOn minor tick marks are visible
minTickOff minor tick marks are invisible (default)
labelsOn axis labels are visible (default)
labelsOff axis labels are invisible
gridOn grid lines are visible
gridOff grid lines are invisible (default)
rightAxis this axis goes on the right
topAxis this axis goes on the top
bottomAxis this axis goes on the bottom
leftAxis this axis goes on the left (default)

percentLabels this axis should use localized percentage
representations (not valid for date and label axes)

Axis Related
Properties

Axis Option Lists

 25

currencyLabels This axis will use a localized currency representation
for labels (not valid for date and label axes)

If you're modifying an X Axis (usually on the top or bottom of a chart), use
xAxisPropertyName instead of yAxisPropertyName. X Axes are on the left and right
for Horizontal Bar Type charts. Speedo and Polar charts have a single Axis,
which is a Y Axis.

If you're modifying an Auxiliary Y Axis (charts that have left and right axes, for
example), use auxAxisPropertyName instead of yAxisPropertyName.

Axis Property Value Type Effect

yAxisTitle string Axis title
yAxisTitleFont font Axis title font
yAxisTitleColor color Axis title color
yAxisLabelFont font use this font for axis labels
yAxisLabelColor color axis labels in this color (default black)

xAxisLabels list
A comma separated list of user-defined labels for
this Axis. This is only effective for certain types of
chart (BarChart derivatives, LabelLineChart, Area
charts) that use a LabelAxis. By default, LabelAxis
is only used for X axes.

yAxisLabelAngle integer
label rotation in degrees (default 0). Note:
rotations of 0 and 90 degrees will be the most
readable

yAxisLabelPrecision integer Number of digits past the decimal point to display
yAxisLineColor color axis line color (default black)
yAxisTickColor color axis tick mark color (default black)
yAxisGridColor color axis grid line color (default black)

yAxisColor color sets axis grids, ticks, lines and labels to the same
color

yAxisTickLength integer number of pixels long for axis tick marks
yAxisMinTickLength integer number of pixels long for axis minor tick marks

yAxisStart double

starting value on axis. By default, axes
automatically determine a starting and ending
value. By setting this value, you can give the axis
a default minimum value. If the Axis is set to
noAutoScale, this value will be used directly.
Otherwise, this value may be adjusted slightly to
yield better looking labels. For example, if you set
yAxisStart to 0.01, the chart may decide to round
the value down to 0.0 to create even axis
increments.

yAxisEnd double
ending value on axis. By default, axes
automatically determine a starting and ending
value. By setting this value, you can give the axis
a default maximum value. If the Axis is set to
noAutoScale this value will be used directly

Detailed Axis
Properties

 26

Otherwise, this value may be adjusted slightly to
yield better looking labels. For example, if you set
yAxisStart to 9.99, the chart may decide to round
the value up to 10.0 to create even axis
increments.

yAxisLabelCount integer how many labels on an axis set to noAutoScale

yAxisTickCount integer how many tick marks on an axis set to
noAutoScale

yAxisMinTickCount integer how many minor tick marks on an axis set to
noAutoScale

yAxisGridCount integer how many grid lines on an axis set to
noAutoScale

yAxisGridStyle integer the line style of the grid lines for this axis
yAxisGridWidth integer the width in pixels of the grid lines for this axis
yaxisThresholdLine0Color Color The color of reference line 0 (40 available).

yAxisThresholdLine0LabelColor Color The color of the label for reference line 0

yAxisThresholdLine0LabelFont Font Font for for reference line 0’s label

yaxisThresholdLine0LabelString String Optional label for reference line 0

yAxisThresholdLine0LineStyle Integer Line style for reference line 0

yAxisThresholdLine0Value Double Where on the Y axis should reference line 0 draw.

Tip:

If you want an axis to start at a specific value, but end at some
value based on data, just use yAxisStart without including
noAutoScale among your yAxisOptions.

The following list contains options for Time/Date X axes, such as those used
for dateLineApp and dateAreaApp, as well as financial chart types like stickApp
and hiLoCloseApp

DateAxis Properties Type Effect

startDate string time/date for axis starting value.
endDate string time/date for axis ending value

axisDateFormat string
By default, DateAxis selects an appropriate labelling type
based on your time range and your locale. This property lets
you override the axis labels to use your specific formatting
instructions. See the Date Format table above for more
information on how to use the formatting patterns.

axisSecondaryDateFormat string
Some DateAxes use a primary and secondary format to
highlight important boundaries, like years or hours. This
parameter lets you set the date or timestamp format for one
of these boundaries. See the Date Format section above for
more information on how to use the formatting patterns.

Date and Time
Axis Properties

 27

scalingType integer

1 scale by seconds
2 scale by minutes
3 scale by hours
4 scale by days
5 scale by weeks
6 scale by months
7 scale by years

axisTimeZone string

This determines the timezone used for displaying date data.
By default chart objects use the timezone of the server. This
may be incorrect in some cases. For example, if my server is
parsing time data in New York, and I want a user in
California to see the data in real-time not New York time,
then this parameter can be used to change the way the data
is displayed. Timezones can be specified by JDK 1.1
deprecated strings like PST, EST, etc., by Java 2 standards:
"America/Los_Angeles", or by the difference from GMT in
this syntax: GMT[+|-]hh[[:]mm] (for example Eastern
Standard Time would be equivalent to "GMT-5:00").

inputTimeZone string

This determines the timezone used for parsing date data. By
default chart objects use the timezone of the . Timezones
can be specified by JDK 1.1 deprecated strings like PST,
EST, etc., by Java 2 standards: "America/Los_Angeles", or
by the difference from GMT in this syntax: GMT[+|-]hh[[:]mm]
(for example Eastern Standard Time would be equivalent to
"GMT-5:00").

Dataset colors and styles are very important to KavaChart. These colors are
used to define the color of bars, pie slices, legend icons, and so on.

Dataset Parameters
(available datasets 0 through
39)

Type Effect

dataset0Name string name for display in legend (default "dataset0")
dataset0Color color color to use for this dataset (default varies)
dataset0Colors list of colors colors to use for pie slices or bars (default varies)

dataset0SecondaryColor color
The Color to be used as the second color with
dataset textures/gradients. The default is
transparent.

dataset0SecondaryColors list of colors Colors to be used as the second color with dataset
textures/gradients. The default is transparent.

dataset0Gradient integer
Sets the gradient for this dataset. Available
gradient values are 0 for left/right mirrored, 1 for
top/bottom mirrored, 2 for top to bottom, and 3 for
left to right

dataset0Gradients list of
integers

Sets the gradients for this dataset. For available
values see datset0Gradient.

dataset0Texture integer
Sets the texture for this dataset. Available texture
values are 0 for horizontal stripes, 1 for vertical
stripes, 2 for diagonal down stripes, 3 for diagonal
up stripes, 4 for cross hashing, and -1 to use the
dataset image to create the texture.

dataset0Textures list of
integers

Sets the textures for this dataset. For available
values see datset0Texture.

Dataset Related
Color and Style
Parameters

 28

dataset0Image Filename or
URL

image to use for this dataset's markers (default
none). Use this property to define line markers for
scatter plots.

dataset0Images list of
filenames

images to use for this chart's markers (default
none). Use this property to define individual line
markers for scatter plots. These values will also be
used as fill images for pie charts or individually
colored bar charts.

dataset0MarkerStyle integer
Specify an internal marker for line charts and
scatter plots (0=box, 1=diamond, 2=circle,
3=triangle). Default is -1 (none)

dataset0MarkerStyles list of
integers

Specify internal markers for datsets drawn with
different markers at each data point. See
datset0MarkerStyle for available marker values.

dataset0MarkerSize integer pixel width of internal marker for line charts and
scatter plots.

dataset0MarkerSizes list of
integers

pixel widths of internal markers for line charts with
individual markers

dataset0LineWidth integer pixel width of plot line

dataset0LineStyle integer
Sets the line style for this line. Available values for
this parameter are 0 for dashed, 1 for dotted, 2 for
dot-dashed, and -1 for solid (default = -1).

dataset0LabelFont font font to use for this dataset's labels (default
TimesRoman 12pt)

dataset0LabelColor color color to use for this dataset's labels (default black)

 29

Server Chart Objects
This chapter details the specific chart objects available in KavaChart
ProServe. These charts are the types you name with the setChartType
function.

Each chart type has a few properties that deal with the specifics of that chart
type. For example, pie charts have a property that lets you set the starting angle
of the pie. This property doesn’t make sense for bar charts.

These charts are specified by using the “setChartType” function. For example,
if you wanted to use a column chart, you’d use code like this:

<?
$chart = new chart;
$chart.setChartType(‘columnApp’);
?>

An area chart uses polygons to describe trends. This type of chart is most
appropriate for trends that include cumulative values. For example, an area
chart may be most appropriate for displaying revenue trends for several
categories. The overall trend appears at the top, while each item’s contribution
would appear as a layer.

areaApp

Chapter

6

Area Charts

 30

AreaApp ignores your X value specifications and assumes the values are 0, 1, 2,
3, … This ensures that the areas will align properly. Use the xAxisLabels
parameter to specify your actual labels.

Because area charts are used to display cumulative trends, they don’t generally
give a clear idea of where individual data points are. For this reason, they’re
most appropriate for general trends. Also, dwell labels and hyperlink hot spots
run from mid-point to mid-point for this type of chart.

It’s important for area charts with multiple datasets to use the same X values for
every dataset. Otherwise the areas cannot stack properly.

Note that un-stacked, 3D area charts are problematic. Areas can become
completely obscured, as in the final observation in the chart below:

dateAreaApp

AreaApp ignores your X value specifications and assumes the values are 0, 1, 2,
3, … This ensures that the areas will align properly. Use the xAxisLabels
property to specify your actual labels.

DateAreaApp assumes that X values are timestamps as described in the section
above on data for time oriented charts. It also uses X axis parameters for time
oriented charts.

 31

Because area charts are used to display cumulative trends, they don’t generally
give a clear idea of where individual data points are. For these charts,
“getLinkMap()” define regions that go from mid-point to mid-point for each
observation.

Property value type effect

baseline double sets the baseline value for this area

stackAreas true/false determines whether the areas will be stacked on top of each other
(default is true)

These charts include:

lineApp

regressApp

Line and Scatter
Charts

 32

dateLineApp

labelLineApp

disLineApp

 disLabelLineApp

In general, these charts can be used as conventional line charts, with or without
markers at each vertex. Plot lines can be turned off with the “plotLinesOff”
property or the dataset0Color property. If markers are turned on with lines
turned off, these charts become scatter plots. You can plot some dataset lines
and make others invisible by setting dataset0Color to “transparent” for the
scatter-only datasets.

Chart objects that begin with “dis”, such as disLineApp, support discontinuous
data. They will create line breaks where data is missing. See the data section
above to understand how to define discontinuities

DateLineApp uses time oriented data, as discussed in the data section above.
These charts also recognize properties for formatting time oriented axes,
discussed above.

 33

RegressApp performs a simple linear regression calculation on the chart’s data
values. Markers appear at the actual data points, while the line is drawn
according to the regression’s prediction. This is a classic “scatter plot” that
shows positive, negative, or no correlation, and gives visual feedback about the
strength of that correlation.

Property value
type

effect

plotLinesOn anything plot lines should display (default)
plotLinesOff anything Create a scatter plot by making plot lines invisible

individualMarkers true/false
If markers are used, this parameter determines whether or not the
datum markers will be used rather than the dataset marker (default
is false).

This category includes both charts with vertical and horizontal bars, as well as
hi-lo bars. The charts are:

barApp

columnApp

Bar and Column
Charts

 34

stackBarApp

stackColumnApp

hiLoBarApp

 35

hHiLoApp (horizontal hi lo bars)

dateBarApp

dateColumnApp

dateStackBarApp

dateStackColumnApp

 36

Bar charts have variable bar width, an adjustable baseline, and labels that can be
toggled on or off. If you don't include a parameter to define X axis labels, this
chart will use item labels (parameter dataset0Labels) beneath each bar. If item
labels aren't defined, this chart will display each bar's Y value beneath it.

If you want each bar to have a different color, set the property
“individualColors” to true, and define the colors with “dataset0Colors”.

StackBarApp and stackColumnApp stack datasets instead of clustering them.
This is useful to display a cumulative summary along with the individual data.

Charts that begin with “date” use time oriented data, as described above. These
charts also support the use of time oriented axis formatting parameters, as
described above.

Dataset image parameters will cause your bars to be drawn using tiles of the
specified image.

Property value
type

effect

barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series defined,
this value describes the total width of a cluster of bars.

individualColors true/false
In bar/column charts that normally use only the Dataset color for
drawing bars this will determine whether datum colors should be
used instead (default is false).

useValueLabels true/false Determines whether y values or data labels are used for bar labels.

dataset0y2Values List This list of numbers is used to add error bars to each bar (Note:
error bars also require “X” values to operate

errorBars true/false Determines whether error bars should be displayed

Pie Charts are drawn with pieApp.

Pie Charts

 37

Pie charts can toggle percentage, value, and textual labels. They can also set a
beginning angle value, and can set an exploded slice for emphasis. Pie chart
colors are defined with the parameter dataset0Colors. Pie charts ignore datasets
beyond dataset0.

Pie Chart
Properties

value
type

effect

explodeSlice integer slice number to explode

explodeSlices list of
doubles

This will be list of explosion values for each slice. Explosion
values should be between 0 and 1, but generally pretty close to 0.
The default value when a slice is exploded with explodeSlice is
.05

textLabelsOn anything make string labels visible
textLabelsOff anything make string labels invisible (default)
valueLabelsOn anything make numeric labels visible
valueLabelsOff anything make numeric labels invisible (default)
percentLabelsOn anything make percentage labels visible (default)
percentLabelsOff anything make percentage labels invisible
percentPrecision integer the number of digits of precision for Pie percent labels

labelPosition integer 0: at center of slice, 1: at edge of slice, 2: outside edge of slice
with pointer

startDegrees integer degrees counterclockwise from 3 o'clock for first slice
xLoc double x Location for center of pie (between 0 & 1, default 0.5)
yLoc double y Location for center of pie (between 0 & 1, default 0.5)
pieWidth double % of window for pie diameter (default .6 = 60%)
pieHeight double % of window for pie diameter (default .6 = 60%)

pointerLengths list a values to redefine the pointer lengths for external labels. By
default, this value is 0.2.

lineColor Color redefines the color used for pie slice pointers

BarArea charts layer bars over areas, with shared axes. BarArea charts have
variable bar width, and labels that can be toggled on or off. If you don't include
a parameter to define X axis labels, this chart will use item labels (param
dataset0Labels) beneath each bar. If these labels aren't defined, this chart will
display each bar's Y value beneath it. Data series can be assigned to either Bar or
Area style charting. Bars draw over areas, and may be stacked or clustered. Areas
are always stacked.

barAreaApp

Combinations: Bar-
Area Chart

 38

Parameter value
type

effect

datasetNType Bar|Area dataset N will be either Bar or Area, based on this value.
stackedBar true|false If "true", bars will be stacked, one series upon another.
barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

Bar-Line charts layer lines over bars, with shared axes. BarLine charts have
variable bar width, and labels that can be toggled on or off. If you don't include
a parameter to define X axis labels, this chart will use item labels (param
dataset0Labels) beneath each bar. If these labels aren't defined, this chart will
display each bar's Y value beneath it. Data series can be assigned to either Bar or
Line style charting. Lines draw over bars, and bars may be stacked or clustered.

barLineApp

Combinations: Bar-
Line Chart

 39

Parameter value
type

effect

datasetNType Bar|Line dataset N will be either Bar or Line, based on this value.
stackedBar true|false If "true", bars will be stacked, one series upon another.
barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

These include speedoApp and hSpeedoApp. The only difference between these
two is that hSpeedoApp adds a history mark in the background; a sort of high
water mark.

Speedo charts have adjustable axis locations and styles, as well as adjustable
needle styles. This chart can be particularly useful in conjunction with an image
background to superimpose a dial and needle on a scanned image of a physical
gauge.

Speedos only use the first value of dataset 0. However, the other values in
dataset 0 are considered for building the speedo’s scale.

Speedo Chart
properties

value
type

effect

needleStyle integer Kind of needle (default 1) 0 = arrow, 1 = line, 2 = thick arrow, 3
= swept arc

speedoPosition integer 0 (default) is a mostly complete circle, 1 - 4 are semi circles in
various positions, 5-8 are quarter circles in various positions

labelsInside anything labels on the inside of the speedo

Speedos

 40

labelsOutside anything labels on the outside of the speedo
watermarkColor color for hSpeedoApp, determines the color of the history watermark

KavaChart “radar charts” or “polar charts” are also called “Kiviat Diagrams”.
These charts draw multiple spoke axes, with a line for each dataset encircling the
center. By default, these charts assume one axis spoke per observation, and they
assume that all datasets have the same number of observations.

Polar Chart
Properties

value
type

effect

manualSpoking true|false If defined, you are responsible for determining how many
"spokes" should be drawn in this chart's axis representation

numSpokes integer The number of spokes in this chart's Axis system (default 4)

Use bubbleApp to build a bubble chart. This chart draws circles at X,Y values
specified by dataset0xValues and dataset0yValues. The size of the circle is
determined by dataset0y2Values.

Radar Charts

Bubble Charts

 41

These charts may have filled or hollow circles, crossing X and Y axes, and
manual or automatic Z scaling. Z scaling refers to the relative size of the
bubbles, based on the overall set of Z (y2) values.

Bubble Chart
Properties

value
type

effect

zAutoScaleOff anything Indicates that you want to set the Z scaling (in terms of a
percentage of the Y axis scale.

setZScale double
Sets the size of bubbles, relative to Y axis units. For example, if
the y2 value for a particular bubble is 10 and zScale is set to 2,
then the bubble’s diameter will be twice as big as a 10 unit
increment on the Y axis.

crossAxes Boolean Determines whether the X and Y axes should cross. If true, the
default crossing value is 0, 0.

xCrossVal double Where the Y axis should cross the X axis.

yCrossVal double Where the X axis should cross the Y axis.

Gantt charts are a specialized chart designed to show when tasks start and end.
This sort of chart is particularly useful for resource allocation and project
planning, but it can also be used to visually describe the progress of multiple
projects or processes.

ganttApp

This chart uses the special params dataset0StartDates and dataset0EndDates to
describe the start and end of each colored bar on track “0”. Each dataset is
arrayed along a single track. In the example above, we’re using dataset0 and
dataset1 to represent United States and Japanese leader’s tenure, respectively.
The tooltip label shows the start and end value along with the label (leader’s
name in this case)

A “discontinuity”, or invalid value, like “x” in place of a date creates a torn edge,
like the end point on the United States bar, when the property “useTearEdge” is
set to “true”.

Gantt Charts

 42

Another special property for this chart, minBarWidth, ensures that very narrow
bars, like those in the above, will remain visible.

Parameter value type effect

dataset0StartDates list
A list of dates in “inputDateFormat” format, describing the
start times/dates for each item in a particular row.
Datasets 0 through 39 are available. Dataset names are
used to label the vertical axis.

dataset0EndDates list
A list of dates in “inputDateFormat” format, describing the
ends for each bar segment in a particular row. An un-
parseable date, like “XX”, would be interpreted as an
incomplete task.

dwellLabelDateFormat Date format A format string to describe start and end dates

dwellStartString String
This string defines the dwell label string for the start date.
This string should have 'XX' characters where the date
will occur. Default is "Start XX"

dwellEndString String This string defines the dwell label string for the end date.
Default is "End XX"

dwellIndefiniteString String This string defines the dwell label string for an indefinite
start/end. Default is "Indefinite"

Sectormap charts are very efficient visuals for displaying certain kinds of data.
The size of each square in a sectormap represents its relative size (Y value)
within the dataset, and the color of the rectangle represents another factor, such
as price change (X value). Each dataset is bounded by a rectangle that
represents the Dataset’s overall contribution to Y values for the entire set of
datasets.

sectorMapApp

Sectormap Charts

 43

A sectormap could be used to represent financial values in a customer’s
portfolio, for example, where each data represents a market sector (e.g. finance,
transportation, utilities, etc.), and each item in the dataset represents a particular
security in that sector. You can tell at a glance how your portfolio is performing,
which sectors are doing well in the displayed time period, and which stocks are
having the most impact on your portfolio.

Parameter value type effect

individualColors True|false Determines whether colors should come from
“dataset0Colors”

gradientColoring True|false Determines whether colors should be auto-graduated
from the dataset color to the “secondary color”

sectorSecondaryColor Color A second color to be used for gradient coloring

baseColor Color
A color to be used as a neutral value when “baseValue”
is used, giving effectively a 2 dimensional gradient –
dataset color to base color to secondary color

baseValue Double A value to be used for the baseColor.

BarArea charts layer bars over areas, with shared axes. BarArea charts have
variable bar width, and labels that can be toggled on or off. If you don't include
a property to define X axis labels, this chart will use item labels (defined with
dataset0Labels) beneath each bar. If these labels aren't defined, this chart will
display each bar's Y value beneath it. Data series can be assigned to either Bar or
Area style charting. Bars draw over areas, and may be stacked or clustered. Areas
are always stacked.

barAreaApp

Combinations: Bar-
Area Chart

 44

Property value
type

effect

datasetNType Bar|Area dataset N will be either Bar or Area, based on this value.
stackedBar true|false If "true", bars will be stacked, one series upon another.
barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

Bar-Line charts layer lines over bars, with shared axes. BarLine charts have
variable bar width, and labels that can be toggled on or off. If you don't include
a parameter to define X axis labels, this chart will use item labels (param
dataset0Labels) beneath each bar. If these labels aren't defined, this chart will
display each bar's Y value beneath it. Data series can be assigned to either Bar or
Line style charting. Lines draw over bars, and bars may be stacked or clustered.

barLineApp

Combinations: Bar-
Line Chart

 45

Property value
type

effect

datasetNType Bar|Line dataset N will be either Bar or Line, based on this value.
stackedBar true|false If "true", bars will be stacked, one series upon another.
barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

This collection includes some standard charts for dealing with financial data:
candlestickApp and hLOCApp use 4 Y values for each observation at a single
date or time. These are the high, low, open, and close prices for a particular
time period.

candlestickApp

hLOCApp

Special properties for these charts:

Parameter value type effect

Candlestick and
OHLC Charts

 46

dataset0highValues list High price at observed dates
dataset0lowValues list Low price at observed dates
dataset0openValues list Open price at observed dates

dataset0closeValues list Close price at observed dates

dataset0dateValues list List of dates in “inputDateFormat”

CustomDatasetHandler URL A url containing rows of date,open,high,low.close values

hiLoCloseApp is very similar to Candlestick and OHLC charts, but it uses 3 Y
values for each time period. These represent the high, low, and closing prices
for a particular time period. Close data is provided with dataset Y values, high
data is Y2 and low data is Y3.

stickApp is similar to a bar chart, but draws a narrow bar, or “stick’ at each time
period. The width of these bars can be specified in pixels. Multiple datasets do
not stack or cluster.

This chart is frequently combined with a hi-lo-close, candlestick or ohlc chart to
display price over volume:

finComboApp combines hiLoClose, line, and stick elements into a single chart
with multiple windows. The “splitWindows” parameter determines whether all
datasets will appear in a single window, or each dataset should appear in a
unique window.

The best way to supply data to these charts is through an implementation of
com.ve.kavachart.utility.DataProvider. The datasets provided by this
DataProvider should supply datasets that contain
com.ve.kavachart..parts.CandlestickDatum classes. See the demos for several
examples that supply candlestick data. You can also download one of these
DataProviders here:

http://www.kavachart.com/sample_classes/examples.zip

Stick Charts

Combination
Charts

 47

Finance charts can also read data from a URL specified through the parameter
“customDatasetHandler”. The expected input stream has a column of dates or
times in the format specified by the “inputDateFormat” parameter, and then a
number of columns of Y data. Each dataset consumes the number of columns
appropriate for its data type. For example, in a candlestick chart, each dataset
uses the first column as the X axis period, and then uses 4 columns for high,
low, open, and close data. A stick would use the first column for the date or
time, and then use a single column for each dataset’s Y (or price, volume, etc.)
values.

Property value type effect

datasetNType HLOC|Stick|Line dataset N will be either Stick, HLOC, or Line, based on this
value. (finComboApp only).

splitWindow true|false
if true (default) each dataset type will be in a a separate window
with an independent Y axis. The X axis will be shared among all
dataset types.

stickWidth Integer Width (in pixels) of stick bars (stickApp only).

Some of the multiple axis combination charts and time oriented charts are
frequently used for financial data.

The KavaChart Enterprise Edition also includes a “kcfinance” package, which is
specifically designed to support most common finance charts. This package
takes some coding to attach data sources properly, but it’s much more
sophisticated than the more basic server classes at representing financial data.
“Kcfinance” is especially well suited for generating images on a server.

Many combination charts are more useful if elements are assigned to different Y
axes. For example, you might want to compare trends for baseball scores and
basketball scores in the same chart. Baseball scores will be much lower, but
there still might be some discernable trend. In this case, you could just use
twinAxisLineApp to assign baseball scores the the right axis, and basketball
scores to the left axis.

twinAxisBarAreaApp: assigns bar data to the left axis and area data to the
right (auxAxis).

Combinations:
Multiple Axis
Charts

 48

twinAxisBarLineApp: assigns line data to the left axis and bar data to the
right (auxAxis).

twinAxisDateComboApp: uses time oriented data, and time oriented axis
parameters for the X axis. Datasets can be bar, line, area, or stick, and may
be assigned to either left or right axes.

twinAxisDateLineApp: uses time oriented data, and time oriented axis
parameters. Datasets are assigned to the left axis by default, and the right
(auxAxis) by parameter.

 49

twinAxisLineApp: uses numeric X values. Datasets are assigned to the left
axis by default, and the right (auxAxis) by parameter.

twinAxisStackBarLineApp: uses a Line element for the left axis, and a
StackBar element for the right axis. Axis assignment is implied by the
dataset type.

To change the colors, fonts, title, scaling, etc. for the right axis, use “auxAxis” in
place of “yAxis”. For example, to set the title, you would use the parameter
“auxAxisTitle” for the right, and “yAxisTitle” for the left.

Property value type effect

datasetNType Bar | Line |
Area | Stick

This determines the DataRepresentation for datasetN. “Area” is
only available for TwinAxisBarAreaApp, Line is not available for
TwinAxisBarAreaApp, and so on. Stick is only available for
TwinAxisDateComboApp

datasetNonRight true|false

This determines whether dataset N will be assigned to the
standard left axis or the auxilliary right axis. Only applicable to
twinAxisDateLineApp, twinAxisLineApp, and
twinAxisDateComboApp. Other charts assign one data
representation type (e.g. bar) to the primary axis, and the other
(e.g. area) to the auxiliary axis.

plotLinesOn anything plot lines should display (default). Applicable to all of the Twin
Axis Charts except twinAxisBarAreaApp.

plotLinesOff anything Create a scatter plot by making plot lines invisible. Appicable to
all of the Twin Axis Charts except twinAxisBarAreaApp.

auxPlotLinesOn anything
plot lines should display (default). Applicable to
twinAxisDateLineApp, twinAxisLineApp, and
twinAxisDateComboApp.

auxPlotLinesOff anything
Create a scatter plot by making plot lines invisible. Applicable to
twinAxisDateLineApp, twinAxisLineApp, and
twinAxisDateComboApp.

barBaseline double Bars ascend or descend from this value. Also applicable to
Sticks in twinAxisDateComboApp.

barClusterWidth double This determines how wide each bar should be If the value is 1 0

 50

bar 1 will touch bar 2. If the value is 0.5, each bar will take 50%
of the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

areaBaseline double sets the baseline value for this area

auxBarBaseline double sets the baseline value for the Sticks assigned to the aux axis in
TwinAxisDateComboApp

barWidth integer sets the width in pixels of the Sticks in TwinAxisDateComboApp

auxBarWidth integer sets the width in pixels for the Sticks assigned to the aux axis in
TwinAxisDateComboApp

 51

Using a Properties Object or File
In our scriptlet examples so far, we have always used the "setProperty" method
to assign property values. There are other ways to set chart properties, and you
can combine the various property setting techniques to optimize your server
chart implementation.

You can store your chart properties in a properties file, which the chart object
reads during chart generation. This file is specified with the function “setStyle”.

Putting properties in an external file has some significant benefits. If your charts
are very different from the default charts, PHP script can become cluttered with
calls to “setProperty”, making your code appear more complicated than it really
is. This sort of inline coding is also not particularly portable, except by doing
cut-and-paste operations. Putting all the properties in your code also makes you
responsible for the overall style and appearance of the chart, and there might be
someone in your organization better suited to creating stylish charts.

You can also use a single properties file for several applications, even though the
data acquisition logic may vary dramatically.

A properties file is a text file that looks like this:

titleString=Annual Sales
backgroundColor=00ffa6
plotAreaColor=00ff77
dataset0Color=green
yAxisLabelFont=Arial,12,0

And so on.

Property Files

 52

Image Format
Recommendations
KavaChart supports most popular image formats. Which one is best
for your application? That depends on the application, but every image
encoder has pluses and minuses. These are discussed below

The GIF89a image format is probably the most widely used on the worldwide
web. It provides excellent compression for images that have 256 colors or less,
and has some nice features, like transparency and animation.

KavaChart uses a built-in GIF generator when the “imageType” property is set
to “gif”. This image encoder reduces all images to 256 colors by dithering, and
lacks support for transparency.

If you require GIF output with no dithering, or GIF output with transparency
support, see the chapter on programming server objects for more information
about installing custom image encoders.

The JPEG image format is ideal for high color images, such as photographs.

Select an imageType of “j_jpeg” to use a JPEG.

JPEG has some drawbacks when rendering chart output. Because it’s designed
for photographic images, and uses a lossy compression algorithm, lines (such as
axis lines, bar outlines, etc.) may appear blurry. Depending on your situation,
however, the image quality might be appropriate.

JPEG also lacks support for transparency. This image format is supported by
every web client. Also, this image format requires no special licensing for
production use.

PNG is KavaChart’s default image format. Portable Network Graphics (PNG)
holds the promise of eventually replacing GIF, and supplanting JPEG for some

Chapter

7

GIF

JPEG

PNG

 53

applications. If you are generating charts for browsers that support PNG, this is
an ideal format for KavaChart output.

Unfortunately, some browsers (notably many older Macintosh browsers) lack
support for this format, which may limit its usefulness in your production
environment.

Select PNG with the property “imageType=j_png”.

KavaChart can produce Macromedia Flash “movies” that represent charts.
Flash has a number of advantages over other image formats: It’s a “vector”
format, which means that the information is rendered on the client browser.
Definitions can be scaled (zoomed in and out by a user), and they carry a built-in
set of tooltips and hyperlinks with the flash data stream. KavaChart’s
highlighting and tooltip behavior is much more animated than the default
tooltip labels associated with other image types. Flash output is also
“antialiased”, which removes the jagged edges associated with the edges of pie
charts or diagonal lines. Flash output is very highly compressed, so users
perception of performance tends to be very good. The Macromedia Flash plug-
in is installed by default on most browsers.

On the other hand, some users are in organizations that don’t permit the Flash
plug-in. Flash output can’t be copy/pasted into other applications. Also some
users dislike the slight “blurring” of character edges caused by Flash antialiasing.

In a high-volume production environment, Flash has the advantage of being a
vector and polygon format; it doesn’t require as much image memory on the
server as generating true image formats.

Select the Flash format with “imageType=flash” or “imageType=swf”.

Another vector format available through KavaChart is “Scalable Vector
Graphics”. SVG support is available in some browser installations, although it’s
not as widespread as Flash or image support. KavaChart’s SVG support is very
similar its Flash output: highly animated tooltips and highlighting, highly
compressed vector output, etc. You can download and install SVG support
from Adobe’s SVG web pages.

Although some browsers will recognize and handle SVG as a MIME type, you
will generally need to use EMBED tags to handle this data type with Adobe’s
plug-in.

Select SVG format with “imageType=svg”.

The BMP format is supported in most Windows applications, and is a non-lossy
image format, so the images are crisp. Unfortunately, charts created in BMP
format are not compressed, and image data can be very large. BMP files are
typically not appropriate for web based documents, and are not supported in all
browsers.

Flash

SVG

BMP

 54

Select BMP format with “imageType=j_bmp”.

 55

 57

Index
antialiasOn, 16
Axis, 11, 12, 26, 27, 28, 42, 49, 51
Background, 13
Bar charts, 38
BMP, 55
Bubble Charts, 42
Color, 21, 23, 29
DataProvider, 48
DataRepresentation, 13
Dataset, 11, 19
Date Formats, 20
DateAxis, 11
Discontinuities, 20
financial data, 47
Flash, 55
Font, 23
GIF, 54
Hyperlink, 17
Hyperlinks, 17
imageType, 16

JPEG, 54
LabelAxis, 11
Legend, 14
linear regression, 35
locale, 28
Pie Charts, 38
Plotarea, 11, 12
PNG, 54
Properties, 53
properties file, 53
Radar, 42
Scatter Charts, 33
server, 17, 29
Speedos, 41
SVG, 55
Time, 20
tooltip, 18
Tooltip, 17
URL, 22, 24, 25, 30, 49
watermark, 42

